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Composite materials are widely used in aircraft structures, their relative rigidity/weight
confers their advantage over metal structures, and the stacking sequence plays an important
role for their use. The objective of this work is to analyze by the finite element method
the mechanical behavior of a single lap joint of composite/composite type under a tensile
load. In order to see the effects on the failure load, two basic parameters are taken into
consideration; the stacking sequence of composite and thickness of each layer constituting
the composite. Calculation of the failure load is made numerically with the ABAQUS code
using the developed technique of VCCT (Virtual Crack Closure Technique) based on fracture
mechanics. Finally, the influence of the bonding defect on the failure load is analyzed. The
results clearly show the importance of optimizing fiber orientation and hence the stacking
sequence for proper use of composite in bonded assemblies.
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1. Introduction

Single lap joints are widely used, in particular, in aeronautics. Their main problem is the non-
-uniform stress distribution in the adhesive joint. These stresses are concentrated at the edges
of the adhesive. This concentration is usually due to misalignment of two forces that engender
creation of additional stresses at the edges of the bending moment, which causes subsequent joint
failure. The behavior analysis of the assembly leads directly to the analysis of mechanical beha-
vior of the adhesive by determination of stresses in the adhesive joint and the adhesive/composite
interface.

Several authors analyze stresses in the adhesive by analytical methods, see Adams et al.
(1986), to estimate the response of the adhesive against the applied load. Others have extended
their research to analyze the stress distribution by numerical methods, Tsai et al. (1995), to vary
more mechanical and geometric parameters influencing the adhesive durability. The effect of the
nature of materials to be assembled on the bonding strength of single lap joints is still not fully
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understood. Conventional elastic analyzes predict that the resistance increases with strength of
the adherent, and experimental results confirm this.

The analysis of breakdown of composite laminate or composite bonded joints is essential
to ensure a long structure life, see Shiming et al. (2011), Ray and Majamuder (2014) and Liu
et al. (2015). It has led researchers to use more effective methods, namely the Virtual Crack
Closure Technique (VCCT), the eXtended Finite Element Methods (XFEM) and the Cohesive
Zone Method (CZM).

The Virtual Crack Closure Technique (VCCT) is a well-established method for calculating
the energy release rate (ERR) when analysing fracture problems through the finite element
method (FEM). The technique is based on the numerical implementation of Irwin (1958). The
crack closure integral was first proposed for two-dimensional problems by Rybicki and Kanninen
(1977), and later extended to three-dimensional problems by Shivakumar et al. (1988). In the
recent years, the VCCT has gained great popularity in the study of mixed-mode fracture pro-
blems such as delamination of composite materials and interfacial fracture between dissimilar
materials. In these cases, the VCCT is used to compute not only the total ERR, but also the
contributions of three fracture modes (I or opening, II or sliding and III or tearing) Krueger
(2004).

A comprehensive review of VCCT formulae for different element types was given by Krueger
(2004) and Whitcomb (1989) who were first to introduce the use of the VCCT to determine
ERR for circular delamination. Since then, a lot of numerical analyses have been performed by
using this technique, many of them dealing with initiations and growth of delamination, see
Mukherjee et al. (1994), others with growth evolution, Klug et al. (1996).

The Virtual Crack Closure Technique (VCCT) is a fracture analysis method that is typically
used when plastic dissipation does not exist. More recently, several researchers have developed
this method in their failure analysis in composite structures, namely composite materials and
bonded assemblies.

Delamination can be assimilated to a fracture process between anisotropic layers (interla-
minar damage). Thus, fracture mechanics principles by Janssen et al. (2004) can be used to
study behaviour of composite structures in presence of interlaminar damage and to determine
conditions for the initiation and growth of delamination. If the delamination growth process is
considered as a crack propagation phenomenon, fracture mechanics concepts can be generally
transferred to the analysis of delaminated composite structures. The propagation of a crack is
possible when the energy released for a unit width and length of the fracture surface (named
Strain Energy Release Rate, G) is equal to a threshold level or fracture toughness, characteristic
for each material, see Janssen Zuidema et al. (2004).

Jokinen et al. (2015) studied the applicability of VCCT for crack growth analyses of a bonded
joint with a ductile adhesive and self-similar crack growth. Their analyses were performed for a
Double Cantilever Beam (DCB) specimen with epoxy adhesive. Their force-displacement curve
matched well with the experimental data.

Shokrieh et al. (2012) proposed new finite element methods for modeling the crack growth
taking into account the Timoshenko beam element with only displacement degrees of freedom
addressed for laminated composite beams. Then, they proposed a finite element procedure for
simulation of mode I delamination growth in symmetric multidirectional double cantilever be-
am (DCB) specimens based on the fracture mechanics using the above-mentioned element. A
variable strain energy release rate was used instead of constant initiation fracture toughness.
The strain energy release rate was computed using Virtual Crack Closure Technique (VCCT)
method. Their results of the finite element simulation corresponded well with the experimental
data available in the literature.

Ahn andWoo (2015) presented in their paper the p-convergent partial discrete-layer elements
with the Virtual Crack Closure Technique (VCCT) for delamination analysis of laminated com-
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posite plates. The proposed element could be formulated by suitable dimensional reduction from
a three-dimensional solid to a two-dimensional plate. The three-dimensional VCCT was also sli-
ghtly modified to incorporate with the proposed elements and estimate the energy release rate.
Then for fracture analysis, the efficiency of their proposed approach was demonstrated with the
help of two additional problems such as the double cantilever beam test and the orthotropic
laminated square plate with interior delamination.
The objective of this study is to analyze numerically the effect of composite stacking sequence

on the resistance of an assembly of composite/composite type. Six stacking sequences for the
laminate have been selected in order to see the effect of fiber orientation on the failure load
of the joint. Different values of fracture energy of the adhesive have been proposed in order to
see their effect on the assembly failure load value. The thickness effect of the composite ply on
the assembly failure load value has been highlighted. For this, four thickness values of various
layers of the composite have been studied, namely, 0.125, 0.2, 0.25 and 0.3mm, and that for
each stacking sequence of laminate plates. The analysis of the numerical results show that the
failure load increases as the laminated plate has high strength.

2. Description of model geometry and material properties

The objective of this study is to determine, by a three-dimensional numerical analysis, the failure
load for a single lap joint of composite/composite type under tensile load as shown in Fig. 1.
The dimensions of the two substrates and the adhesive are shown in Table 1. The composite is
of carbon/epoxy type. Its mechanical properties are shown in Table 2.

Fig. 1. Single lap joint geometry

Table 1. Dimensions of different layers of a single lap joint

Thickness of lower and upper parent laminate tp = 2mm

Free length of parent laminate Lf = 60mm

Overlap length Lr = 20mm

Wide of parent laminate w = 15mm

Applied tensile displacement U = 2mm

Table 2. Mechanical properties of the used laminates, Campilho et al. (2005)

E1 = 1.09E+05MPa ν12 = 0.342 G12 = 4315MPa

E2 = 8819MPa ν13 = 0.342 G13 = 4315MPa

E3 = 8819MPa ν23 = 0.380 G23 = 3200MPa

E – Young’s modulus, ν – Poisson’s ratio, G – shear modulus
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The adhesive used for bonding is Araldite 420, its tensile curve is represented in Fig. 2. The
different mechanical properties of the adhesive are given in Table 3 and taken directly from the
literature, see de Moura et al. (2006). This adhesive is used also in the aerospace industry given
its important mechanical characteristics.

Fig. 2. Stress-strain relationship of Araldite R○420adhesive (de Moura et al., 2006)

Table 3. Elastic, strength and fracture properties of the used adhesive (de Moura et al., 2006);
σu,I , σu,II – local strength in mode I and II, respectively, GIC , GIIC – critical strain energy
release rate in mode I and II, respectively

Elastic Strength Fracture energy

E = 1850MPa σu,I = 40MPa GIC = 0.3N/mm

ν = 0.3 σu,II = 24.1MPa GIIC = 0.6N/mm

Different ply orientations of the composite adherent are considered in this study to investi-
gate their effect on the failure load. The value of θ (orientation angle) is measured from the
longitudinal direction of the structure (x-axis) and varied from 0◦ to 90◦ (Table 4). Then, in the
second case, a change of thickness of the layer which has fiber orientation except for 0◦ and 90◦

(Fig. 3) is introduced. All layers have the same matrix (epoxy) and the same fiber materials
(carbon).
The numbers 1, 2, . . . , 6 show the laminate type chosen in the x-axis of different curves. The

laminate type is presented in Table 4.

Table 4. Different ply orientations used in analyses (Campilho et al., 2005)

Laminate 1 – (08)S Laminate 4 – (02/452/452/902)S
Laminate 2 – (02/152/− 152/902)S Laminate 5 – (02/602/− 602/902)S
Laminate 3 – (02/302/− 302/902)S Laminate 6 – (02/752/− 752/902)S

To simulate the crack onset and it is growth as well as to obtain the failure load associated
with delamination of the bonded area, linear behaviour of the materials has been assumed using
shell elements and a 4-node plain part. Figure 6 shows a detail of the mesh used at the lower
and upper bonded edge. The adhesive has been modeled as an interface where it is necessary
to introduce the mechanical parameters listed in Table 2. The delamination has been modeled
between the lower and upper plate using two superimposed shell elements with contact constraint
defined to prevent penetration of the elements.
The debonding has been simulated in the finite element model by maintaining merged nodes

on the two adjacent faces of the overlap region (adhesive/composite). It is necessary to have
an appropriate number of the mesh member in the overlap region since this modeling approach
is based on the number of nodes. When the number of nodes increases, the failure load value
decreases to a steady value regardless of the increase in the number of nodes (approximately
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Fig. 3. Stacking sequence as function of layer thickness

6800 nodes in the overlapping area). However, the interlaminate failure of the plate has not
been considered in this analysis in order to promote only the separation between plates as it
was verified by several authors (Adkins and Pipes, 1988; Kumar et al., 2006).

Delamination is merely debonding between two adjacent parts of the same structure along
thickness. This debonding can be simulated in the finite element method by maintaining not
merged nodes on two adjacent faces of the volumes or surfaces representing respectively two
sublaminates (Fig. 4).

Fig. 4. Delamination simulated by maintaining not merged nodes with identical coordinates belonging
to adjacent elements

The two layers of elements are tied at the interface during the loading. It should also be
noted that some concerns have been raised, mainly related to the convergence of the model by
introducing regular viscosity for an adequate time increment.

The interfacial properties which ensure the adhesion between the laminate plates are assigned
to the nodes, the more the node number increases, the more the interfacial energy decreases to
an optimal number when the separation energy is independent of the number of nodes (see
Fig. 5).

3. Effect of stacking sequence and layers thickness of the laminate plate

In bonded assemblies, the stress distribution in the adhesive joint is heterogeneous. The edges are
always overstretched while the heart of the adhesive is generally inactive. Whether participants
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Fig. 5. Mesh convergence of the merged nodes in the interface using VCCT

Fig. 6. Detail of the mesh at the bonded region

(composite) are too rigid, much of the applied load is transmitted to the adhesive layer and the
fracture will be located at the edges of the adhesive.

The finite element analysis allows one to simulate the traction-separation of a single lap joint
using the VCCT method.

A change in fiber orientation of the composite modifies its resistance and, therefore, minimizes
the charge transfer to the adhesive. The objective is to see how the stiffness of the composite
(stacking sequence) can affect the fracture load value of the overall assembly.

Interface finite elements are placed at the same locations to enable simulation of the crack
onset and its growth, and predict the joint strength under the mixed failure mode. In all cases,
an interfacial failure has been observed. Failure onset occurs at the interface starting in the
borders of the covering surface. This fact is explained by highly pronounced stresses (shear and
peel peaks) at these locations. This overstress peak becomes wider in the presence of defect
bonding, especially at the edges of the adhesive.

Figure 7 presents the fracture load for different stacking sequences of the laminate composite.
According to the analysis results in Fig. 7, the failure load is controlled by the rigidity of the
assembled plates and the bonding surface.

In our analysis, the stiffness is not only due to the composite (Mokhtari et al., 2013; Cam-
pilho et al., 2005), but it is the composite/adhesive/composite stiffness. Figure 7 shows the
composite/adhesive/composite stiffness during loading for each laminate.

For a unidirectional composite in which individual layers have the same orientation of the
fibers and parallel to the direction of the applied load, the stiffness of the composite is very
elevated and, therefore, the structure (composite/adhesive/composite) gets a minimum ductility
ensuring a high failure load and a minimum displacement. However, if the plates are less rigid,
the displacement is greater and, therefore. the tensile strength is less important.

So the failure load is controlled by the rigidity of the assembled plate. The more ductile
the plates are, the greater is the elongation and, therefore, the lower is the failure load. In our
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Fig. 7. Failure load-displacement curves for different stacking sequences of Carbon-Epoxy laminate

Fig. 8. Interfacial failure of the bonded joint

study, the stiffness of the plates is explained by orientation of the fibers relative to the loading
axis (stacking sequence effect), which also explains the rapid separation with the load failure.
However, for laminate 2, 3 and 4, the stacking sequence have some effect on the results in
contrast to laminates 5 (02/602/− 602/902)S and 6 (02/752/− 752/902)S , where the results are
very similar, so the effect is much less.

A change in the composite fiber orientation modifies its mechanical properties which affects
directly the charge transfer to the adhesive and thus the assembly rupture. If thickness of the
plies forming the composite is changed, the composite is consolidated gradually and hence its
section increases. Therefore, more energy is necessary to deform the assembly and thus fracture
load will be higher. The more ply thickness increases, the more the separation force increases,
and this applies to all stacking sequences.

4. Effect of fracture energy and layers thickness of the laminate plate

Different composite bonded systems can have significantly different fracture energies (Varughese
and Mukherjee, 1997). So, it is appropriate to investigate whether variation of this parameter
will affect the predicted failure mechanisms and loads. The fracture energies GI and GII are
varied but the ratio of GI to GII is kept constant. Other parameters are fixed at the baseline
values given in Tables 3. Figure 9 summarizes the effect of fracture energy on the predicted
tensile failure load.

From Figs. 10 and 11, it should be noted that if the fracture energy increases, the assembly
resistance becomes higher, leading to a longer lifetime. The magnitude of this resistance varies
with the variation of the stacking sequence specifically with fiber orientation. The combination
of high breaking energy and stacking sequence for which the fiber orientation is less than 45◦

gives the assembly with high fracture load.

Changing the thickness of the composite ply generates a great resistance to the composite
and thus difficult transfer load to the adhesive and, therefore, high fracture load.
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Fig. 9. Failure load as a function of layer thickness for each stacking sequence

Fig. 10. Failure load as a function of fracture energy for different stacking sequences
(ply thickness of 0.125mm)

Fig. 11. Failure load as a function of fracture energy for different stacking sequences
(ply thickness of 0.2mm)
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5. Effect of bonding defect on the failure load

Most of the research in the bonding area has not considered the presence of bonding defects in
numerical calculations. However, at the end of the stage of implementation of bonded joints,
various defects are likely to be created at different areas of the overlap length. The presence of
porosities in the adhesive joint can be created due to volatile compounds evaporation and/or the
existence of trapped air bubbles during the curing. It is obvious that these types of defects are
prime areas for degradation of the interface by introduction of water or oxygen. More recently,
Karachalios et al. (2013), Shishesaz and Bavi (2013), and Benchiha and Mandi (2015) analyzed
the resistance of a bonded lap joint in the presence of defect by experimental, numerical and
analytical methods. Their results showed that the resistance of the assembly was associated to
the position and size of the defect.

In this part of the work, the effect of presence of a circular defect (diameter of 2mm) is
studied for seven different possible positions (Fig. 12).

Fig. 12. Different positions of defect

Figure 13 shows the mesh for each defect position. The results of the value of the breaking
load are very sensitive to the mesh since the method is based on the number of nodes at the
level of the overlap zone. It is also important to ensure the same mesh for the plates, especially
at the position of the defect. For all cases, it has been observed that separation of two plates
begins at the defect location, especially when the latter is placed near the free edge.

Fig. 13. Detail of the mesh at the region of the bond area for different positions of defects

The architecture of the mesh follows the location of the defect, and the number of nodes is
checked at each analysis. Figure 5 illustrates the effect of the number of nodes on the results.

If the defect is in the middle of the adhesive (position D), the breaking strength value will
not be affected by this position, but by the stacking sequence.

If the defect is on the free edge of the adhesive, it may have a more serious effect on the
breaking strength value, leading to easy separation of the two substrates. If the material stiffness
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is high and the defect is on the free edge of the adhesive, the value of the failure load decreases
considerably (the case of stacking sequence and orientation of fibers less than 45◦).

Fig. 14. Debonding area as a function of the stacking sequence and different positions of defects

Figure 15 shows that the defect presence decreases the fracture load. This decrease is remar-
kable for stack 0◦ (laminate1) and becomes smaller with the increasing angle of fiber orientation.
Therefore, the plate rigidity in the loading direction focuses the defect effect on the separation
load, when comparing the effect of defect position. We find that it is more pronounced and may
go up until 1KN except for some stacks (02/752/− 752/902) and (02/752/− 752/902). Figure 15
presents delaminations paths for different bonding defect positions and stacking sequences. The
delamination path depends both of the defect position and the stacking sequence.
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Fig. 15. Failure load as a function of different positions of defects for each stacking sequence

6. Conclusion

This study has been focused on numerical simulation based on the Virtual Crack Closure Tech-
nique (VCCT) of a single lap joint with and without the presence of the bonding defect. The
following conclusions could be deduced from the obtained results:

• VCCT technique has been used to estimate the failure load value of two composite sub-
strates.

• The failure load value is directly related to stiffness of the material. If the material is more
rigid, the failure load value is elevated, but the displacement decreases.

• An increase in thickness of different layers increases rigidity of the composite plate and,
consequently, increases the failure load.

• Fiber orientation plays a crucial role on the composite mechanical properties. If the fiber
orientation is parallel to the traction direction, the composite acquires high rigidity and,
therefore, a significant failure load.

• If the fiber orientation angle exceeds 45◦, the material stiffness decreases and the elongation
is more important for the plates in the longitudinal axis of the load, which decreases the
failure load.

• If energy separation GI increases, the failure load increases.

• The failure load considerably decreases with variation of the adhesive separation energy
and stacking sequence of the composite if the adhesive has a bonding defect.
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